
CGS 3763: OS Concepts (Memory Management) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Memory Management – Part 6

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: OS Concepts (Memory Management) Page 2 © Mark Llewellyn

LRU Approximation Algorithms
Counter-Based Algorithms

• Keep a counter of the number of references that have been
made to each page.

• Least Frequently Used (LFU) Algorithm: replaces the page
with the smallest counter value. The reason for this selection
is that an actively used page should have a large reference
count.
– A problem arises however, when a page is used heavily during the

initial phase of a process but then is never used again. Since it was
used heavily, it has a high reference count and remains in memory
even though it is no longer needed.

– One solution is to shift the bits in the counter to the right by 1 bit at
regular intervals, forming an exponentially decaying average use
count.

CGS 3763: OS Concepts (Memory Management) Page 3 © Mark Llewellyn

LRU Approximation Algorithms
Counter-Based Algorithms (cont.)

• Most Frequently Used (MFU) Algorithm: based on the
argument that the page with the smallest count was probably
just brought in and has yet to be used.

• As you might expect, neither LFU or MFU replacement is
very common. The implementation of these algorithms is
expensive, and they do not approximate the Optimal
replacement algorithm well.

CGS 3763: OS Concepts (Memory Management) Page 4 © Mark Llewellyn

Allocation Of Frames
• In addition to selecting a victim for page replacement, we must

also consider the allocation of frames to processes.
• We saw that with the FIFO page-replacement algorithm that the

number of page faults may actually increase for an increase in
frame allocation. Although stack algorithms do not suffer from
Belady’s anomaly, the performance of processes running under
these types of page replacement protocols are certainly impacted
by the number of frames allocated to the process.

• If for example, we have 100 free frames and two processes, how
many frames does each process get?

CGS 3763: OS Concepts (Memory Management) Page 5 © Mark Llewellyn

Allocation Of Frames (cont.)

• Consider a single-user system with 128 KB of memory composed
of pages 1 KB in size. This system would have 128 frames.

• Suppose the OS requires 35 frames, leaving 93 frames for the user
process.

• Under pure demand paging, all 93 frames would initially be put on
the free frame list. When a user process begins execution, it would
generate a sequence of page faults.

• The first 93 faults would all get free frames from the free frame
list.

• When the free frame list was exhausted, a page-replacement
algorithm would be used to select one of the 93 in-memory pages
to be replaced with the 94th, and so on.

• When the process terminates, the 93 frames would be returned to
the free frame list.

CGS 3763: OS Concepts (Memory Management) Page 6 © Mark Llewellyn

Allocation Of Frames (cont.)

• There are many variations on the simple strategy outlined on the
previous page.
– We could require that the OS allocate all its buffer and table space

from the free-frame list, when not used by the OS, it can be used to
support user paging.

– We could try to maintain a three page frame reserve on the free
frame list at all times. Thus, whenever a process page faults, there
is always a free frame available to page into. While paging is
occurring, a replacement can be selected, which is then written
back to the disk as the user process continues to execute.

• Other variants are possible, but the basic strategy is clear: the
user process is allocated any free frame.

CGS 3763: OS Concepts (Memory Management) Page 7 © Mark Llewellyn

Minimum Number Of Frames
• Strategies for the allocation of frames are constrained in a variety

of ways.
• It is not possible, for example, to allocate more than the total

number of available frames (unless there is page sharing).
• A minimum number of frames must also be allocated to each

process.
• The obvious reason that a minimum number of frames must be

allocated is performance.
– As the number of frames allocated to each process decreases, the page-

fault rate increases, slowing process execution.

• Another reason is that when a page fault occurs before an executing
instruction is complete, the instruction must be restarted.
Consequently, the process must have enough frames to hold all the
different pages that any single instruction can reference.

CGS 3763: OS Concepts (Memory Management) Page 8 © Mark Llewellyn

Minimum Number Of Frames (cont.)

• An example is the IBM 370 MVC (move characters) instruction.
This instruction takes 6 bytes and can straddle two pages. The
block of characters to move and the area to which it is to be
moved can each also straddle two pages. This situation would
require six frames.

• The worst case scenario occurs when the MVC instruction is
itself the operand of an EXECUTE instruction that straddles a
page boundary; in this case, two additional frames are required,
bringing the total to eight.

• Whereas the minimum number of frames is determined by the
computer architecture (through its instruction set), the maximum
number of defined by the amount of physical memory. In
between these two values, we are left with a significant choice in
frame allocation.

CGS 3763: OS Concepts (Memory Management) Page 9 © Mark Llewellyn

Frame Allocation Algorithms
• The easiest way to split m frames among n processes it to give

each process an equal share, m/n frames. This scheme is known
as equal allocation.
– For example, if there are 93 frames and 5 processes, each process will get

93/5 = 18.6 = 18 frames. The leftover 3 frames can be used as a free
frame pool.

• An alternative is to recognize that various processes will need
differing amounts of memory.
– For example, consider a system with 1 KB frames. A process of 10 KB

and a second process of 127 KB are the only two processes running with
62 free frames. It makes no sense to give 31 frames to the 10 KB process
which in the worst case will need only 10 frames, which will waste the
other 21 frames, which could have been allocated to the 127 KB process.

• This alternative is known as proportional allocation.

CGS 3763: OS Concepts (Memory Management) Page 10 © Mark Llewellyn

Proportional Allocation

m
S
sp for allocation a

frames of number total m
sS

p process formemory virtual of size s

i
ii

i

ii

×==

=

=

=

∑

5964
137
127a

564
137
10a

127s
10s
64m

2

1

2

i

≈×=

≈×=

=

=
=

• Using proportional allocation we have the following:

• Example

Note: With either equal or
proportional allocation, the allocation
may vary depending on the degree
of multiprogramming. If the
multiprogramming level is increased,
each process will lose some frames
to meet the allocation for the new
process. Similarly, if the degree of
multiprogramming is decreased, the
frames that were previously
allocated to the departed process
can be spread over the remaining
processes.

CGS 3763: OS Concepts (Memory Management) Page 11 © Mark Llewellyn

Priority Allocation

• Use a proportional allocation scheme using priorities
rather than size.

• If process Pi generates a page fault,
– select for replacement one of its frames
– select for replacement a frame from a process with

lower priority number

CGS 3763: OS Concepts (Memory Management) Page 12 © Mark Llewellyn

Global vs. Local Allocation
• Another important factor in the way frames are allocated to the

various processes is page replacement.
• With multiple processes competing for frames, we can classify

page-replacement algorithms into two broad categories:
– Global replacement – process selects a replacement frame from the set of

all frames; one process can take a frame from another.
– Local replacement – each process selects from only its own set of

allocated frames.

• For example, consider an allocation scheme where we allow
high-priority processes to select frames from low-priority
processes for replacement. A process can select a replacement
among its own frames or the frames of any lower-priority
process. This approach allows a high-priority process to
increase its frame allocation at the expense of a low-priority
process.

CGS 3763: OS Concepts (Memory Management) Page 13 © Mark Llewellyn

Global vs. Local Allocation (cont.)

• With a local replacement strategy, the number of frames allocated to a
process does not change (unless the degree of multiprogramming changes).

• With global replacement, a process may happen to select only frames
allocated to other processes, thus increasing the number of frames allocated
to it (assuming that other processes did not choose its frames for
replacement).

• One problem with a global replacement algorithm is that a process cannot
control its own page-fault rate. The set of pages in memory for a process
depends not only on the paging behavior of that process but also on the
paging behavior of other processes. Therefore, the same process may
perform quite differently for different executions because of totally external
circumstances.

• Under local replacement, the set of pages in memory for a process is affected
by the paging behavior of only that process.

• Local replacement might hinder a process, however, by not making available
to it other, less used pages of memory.

• Thus, global replacement generally results in greater system throughput and
is therefore the more common method.

CGS 3763: OS Concepts (Memory Management) Page 14 © Mark Llewellyn

Thrashing
• If a process does not have “enough” pages, the page-

fault rate is very high.
• This leads to:

– low CPU utilization
– operating system thinks that it needs to increase the degree

of multiprogramming
– another process added to the system

• Thrashing ≡ a process is busy swapping pages in and
out without accomplishing any real activity.

CGS 3763: OS Concepts (Memory Management) Page 15 © Mark Llewellyn

Thrashing (cont.)

CGS 3763: OS Concepts (Memory Management) Page 16 © Mark Llewellyn

Demand Paging and Thrashing

• Why does demand paging work?
Locality model
– Process migrates from one locality to another
– Localities may overlap

• Why does thrashing occur?
Σ size of locality > total memory size

CGS 3763: OS Concepts (Memory Management) Page 17 © Mark Llewellyn

Locality In A
Memory-Reference

Pattern

